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Probabilistic approach to the Bak-Sneppen model
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We study here the Bak-Sneppen model, a prototype model for the study of self-organized criticality. In this
model several species interact and undergo extinction with a power-law distribution of activity bursts. Species
are defined through their ‘‘fitness’’ whose distribution in the system is uniform above a certain threshold. Run
time statistics is introduced for the analysis of the dynamics in order to explain the peculiar properties of the
model. This approach based on conditional probability theory, takes into account the correlations due to
memory effects. In this way, we may compute analytically the value of the fitness threshold with the desired
precision. This represents a substantial improvement with respect to the traditional mean field approach.
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I. INTRODUCTION

In the recent years, many models mimicking the sca
free behavior exhibited by natural phenomena such as r
basins@1,2#, fracture dynamics@3,4#, earthquakes@5#, have
been extensively studied. The main features of these mo
are the lack of spatial and temporal characteristic scales
evolution through intermittent bursts of activity and the a
sence of the fine tuning of some parameter to reach the c
cal state. To describe all this, the concept of self-organi
criticality ~SOC! @6# has been introduced, and many wor
have been devoted to clarify its real nature@7#.

We focus here on the evolution model introduced by B
and Sneppen~BS! in 1993@8#. This model is the prototype o
a wide class of SOC models, characterized by a determin
dynamics in a medium with quenched disorder. T
quenched noise is independent of time and represents
disordered environment where the system evolves. BS m
is defined by a discrete set ofL species arranged on an on
dimensional network. Each speciesi is defined by a ‘‘fitness’’
xi given by a real number in the interval (0,1). Time evo
tion is discretized and at any time step the species with
lowest fitness is removed from the set/citenote. Also, at
same time the two species neighbors are removed.
should model a food web where extinction of one spec
affects also the survival of predation and prey species. Th
new species with randomly extracted new fitness then e
the system. Hereafter, we shall call this process an ‘‘upd
ing’’ of the species fitnesses. After a transient period,
system reaches spontaneously a stationary state characte
by two main features:~i! the fitnesses are uniformly distrib
uted between a threshold valuexc and 1;~ii ! the dynamics
evolves as a sequence ofcritical avalanches, whose duration
s is power-law distributed@9#: P(s);s2t, where t51.07
@10#.

To study in an analytical way this kind of processes
method based on conditional probability has been rece
introduced. This method, called run time statistics~RTS!,
provides a powerful tool to study how the system stores
formation on the disorder during its evolution. This meth
has been also applied to the class of models derived by
invasion percolation@11,12# to compute the asymptotic be
1063-651X/2002/65~4!/046101~7!/$20.00 65 0461
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havior of the histogram equation. We apply here RTS to
BS model in order to find an analytical approach to solve
model.

As regards the analytical results available for the BS,
only successful approach has been the mean field app
mation. Scale relations and an equation describing the h
archy of the avalanches@13#, allow us to reduce the numbe
of independent exponents to one. A kind ofe expansion was
also introduced to compute the critical exponents by p
forming an expansion around their mean field value@14#.
This alternative approach allows us to compute in a per
bative way the value of the critical threshold linking it to th
avalanche exponentialt. In the following sections we are
going to introduce the main features of the model, the ba
computation of the run time statistics, and the result of t
approach with respect to the BS. A preliminary paper w
some of the results has already been published in Ref.@15#,
here instead we are going to fully develop the derivation
such results.

II. CRITICAL DYNAMICS

The dynamics of the BS model can be viewed as
branching process of branching ratioL, if L is the number of
species in the system. At every time step, one of theL
quenched numbers assigned to the sites is selected to b
dated. The same is done for the two nearest neighbors.
then possible to represent this process as a treelike pic
where every node represents a state from which the sys
can reachL possible states at the subsequent time s
Therefore, at timet there areLt possible states that ar
reached throughLt different paths. Because of the determi
istic nature of the model, time evolution is determined by t
realization of the disorder$x%. This means that if we know
the initial set of valuesxi , i 51, . . . ,L, and the three num-
bers extracted at each time step then we also knowa priori
the evolution of the system. Otherwise, to give a descript
of the behavior of the generic system, we should conside
statistical average over the possible realizations of
quenched disorder. RTS provides an iterative algorithm
assign to each path~sequence of events! its statistical weight
according to the laws of conditional probability.
©2002 The American Physical Society01-1
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We consider the system in the critical state. In this stati
ary critical state of BS model almost all the fitnesses
above a thresholdxc . The distribution function of the fit-
nesses in the critical state, called thehistogram F(x), is
found to be uniform abovexc , and almost zero belowxc .
The critical state is characterized by a power-law distribut
of the durations of critical avalanches:P(s);s2t. Critical
avalanches are defined as a sequence of eventsxmin(s)
,xc , wherexmin(s) is signal, i.e., the value of the minima
fitness at times @9#. Then a critical avalanche begins ea
time the signal reaches a value larger thanxc . Because of the
shape of the histogram, that is of order 1/L for x,xc and
constant forx.xc . In the critical state the signal reache
most values close toxc and the dynamics is a sequence
critical avalanches@9#. Then the site giving rise to a new
avalanche, called theinitiator, has a fitness close toxc . This
means that when the initiator is selected, all the other s
have fitnesses larger thanxc .

Since the critical avalanches are independent of e
other @9#, we can consider the dynamics within one gene
critical avalanche. This is then a fair description of the d
namics of the system in the critical state. Let us define the
of active sitesAt as the sites covered by the avalanche, i
the sites whose fitness has been updated at least once
the beginning of the avalanche. If we consider the dynam
within an avalanche, the possible events at timet regard only
the sites inAt because the selection of any other site wo
imply the end of the avalanche. Indeed, sites not belong
to At have a fitness larger thanxc ~by definition ofAt , their
fitness remained unchanged since the first step of the
lanche!. Therefore, the evolution of the avalanche can
seen as a branching process where the branching ratio i
fixed.

Without loss of generality, we take the time origin at t
beginning of a critical avalanche, and the origin of the co
dinates in the initiator site. Att50 the initiator is the site
with the smallest fitness~i.e., extremal rule! and its quenched
variable ~in the stationary state! has a value close toxc .
Since we are assuming that the stationary state in the sy
is the critical one, all the quenched numbers in the sys
are distributed following the stationary distributionF(x),
apart from corrections of order 1/L. Updating at timet50
affects the initiator and the two nearest neighbors.At51 is
then composed by the three sites$21,0,1%. The three vari-
ables corresponding to these sites are distributed follow
the uniform probability densityf 0(x). If the avalanche pro-
ceeds, there are three possible events leading to three d
ent configurations for the system~see Fig. 1!. Then a path of
length 2 can be realized in the following three ways:~i!
growth of the initiator at timet50 and then growth of its left
neighbor at timet51; ~ii ! growth of the initiator at timet
50, and successive growth of the initiator at timet52; ~iii !
growth of the initiator at timet50 and then growth of the
right neighbor at timet51. As the lengtht ~i.e., the number
of steps! increases, the numberNt of possible paths of tha
length increases fast. For example, avalanches lasting
time steps can occur in the previous three ways, but there
eleven ways to form an avalanche of three time steps~see
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Fig. 1!. In Table I we report the numberNt of possible paths
whose length ist. It can be shown thatNt grows roughly as
t!. Given this picture of the stationary state, it is evident th
a description of the model evolution can be achieved thro
a description of the growth paths. Run time statistics~whose
approach is described in the following section! helps in sort-
ing out the most probable paths, thereby extracting the av
able information on the process.

III. THE RTS APPROACH

Through the RTS we are able to compute the statist
weight of all the possible paths corresponding to a criti
avalanche of a fixed duration@16,17#. The RTS has been
developed in order to extract the maximal information ava
able from the knowledge of the dynamical history followe
by the process. The information is stored ineffectiveprob-
ability density functions~PDF’s! for the variables$x%. These
effective density functions at a certain timet, are used to
compute the conditional probabilities of all the possib
events at timet11 given the state at timet. The probability
of a sequence of events~that is a fixed path!, is then factor-
ized in the product of these one-step probabilities. The tim
dependent PDF’s are obtained by applying the laws of c
ditional probability. At the beginning the only informatio
available on the disorder is the probability densityf 0(x)
from which the quenched variables are extracted. The co
tional probability laws in the following steps modify th
shape of the probability distribution once the previous h
tory is known.

In the case of BS, at every time step the smallest num
is removed from the system. It is then intuitive that if th
lifetime of a species, i.e., the number of tests the spe

FIG. 1. Diagrammatic plot of the first three steps in an av
lanche tree. The initiatori 50 is selected att50. At each step one
has to consider all the possible offsprings. Nonactive sites are
resented by a filled circle; updated active sites are represente
with a simple cross. Crossed empty circles represents instead a
sites not updated at the previous time steps.

TABLE I. Number of possible paths as a function of time.

t 1 2 3 4 5 6 7 8 9

Nt 1 3 11 47 227 1215 7107 44959 30509
1-2
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PROBABILISTIC APPROACH TO THE BAK-SNEPPEN MODEL PHYSICAL REVIEW E65 046101
survived in the search for the minimum, is large, its fitnes
~probably! also large. Henceforth, the longer the lifetime t
higher the probability to deal with a large value of the fitne
x, and the smaller the probability to be removed. This c
cept can be easily formalized by using the theory of con
tional probability.

Let us introduce the time-dependent PDF’sf i ,t(x) giving
the probability density of the quenched variable of sitei at
time t. If mi ,t(x) is the probability density function of fitnes
at time t ~assuming it corresponds to sitei ), we have that
mi ,t(x)dx is the probability that the fitness of sitei has a
value betweenx and x1dx ~given that at timet of a fixed
path,i is the minimum with fitness smaller thanxc ; this last
condition ensures that the system is still under the same c
cal avalanche!. Thenmi ,t(x) is given by

mi ,t~x!5P~x,xi,x1dxuxi5min$x%At21
,xi,xc!

5
P~x,xi,x1dxùxi5min$x%At21

,xi,xc!

P~xi5min$x%At21
,xi,xc!

5
1

m i ,t21
f i ,t21~x! )

kPAt212$ i %
E

x

1

dxkf k,t21~xk!

x<xcx.xc , ~1!

where we have defined the one-step probabilitym i ,t as

m i ,t5P~xi5min$x%At
,xi,xc!

5E
0

xc
dx fi ,t21~x! )

j PAt212$ i %
E

x

1

dxj f j ,t21~xj !. ~2!

m i ,t represents the probability that sitei has the minimal
fitness at timet ~smaller thanxc), given the path followed up
to time t21 @all the information about the past steps is i
cluded in the effective PDF’sf j ,t(x)#. In both Eqs.~1! and
~2! we consider only the fitnesses$x%At

of the active sitesAt

because the others actually do not participate in the dyn
ics, being larger thanxc . It is important to notice that

(
i PAt

m i ,t,1. ~3!

This is because of the condition that the minimum fitnes
less than xc . The complementary probability (1
2( i PAt

m i ,t) is then the probability that the minimum i

larger thanxc , that is, that the avalanche stops at timet.
In a similar way we can obtain the probability densiti

f k,t(x), with kPAt21,
04610
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f k,t~x!

5P~x,xk,x1dxuxi5min$x%At21
,xi,xc!

5
P~x,xk,x1dxùxi5min$x%At21

,xi,xc!

P~xi5min$x%At21
,xi,xc!

55
1

m i ,t
f k,t~x!E

0

x

f i ,t~xi !dxi)
j
E

xi

1

dxj f j ,t~xj ! x<xc

1

m i ,t
f k,t~xc!E

0

xc
f i ,t~xi !dxi)

j
E

xi

1

dxj f j ,t~xj ! x.xc ,

~4!

where j PAt212$ i ,k%. In this way the effective PDF’s are
conditioned to the whole history from time 0~beginning of
the avalanche! to time t because of the step-by-step alg
rithm through which they are obtained. We also notice tha
the minimum fitness is less thanxc , this implies that
f i ,t(x)5 f i ,t(xc) for x.xc . As it has been pointed out in Re
@9#, the dynamics involves only the quenched numbers be
xc , this is the reason why the system does not acquire in
mation on the variables in the regionx.xc .

These formulas for the effective probability densities ho
if we assume that the probability density of the whole set
variablesFt($x%) could be factorized in the product of th
one-variable probability densities at any time. Actually this
true only at timet50, when the$x% are uncorrelated, while a
later times the extremal dynamics induces correlatio
among them. Nevertheless, the approximation

Ft~$x%!.)
j

f j ,t~x! ~5!

has proven to lead to results in good agreement with d
from simulations@18#, and to give rise to an error that i
negligible for large values of the system sizeL @19#.

Once the one-step probabilitiesm i ,t have been computed
the probability of a given pathCt ~i.e., a fixed sequence o
events from time 0 to timet! is given by

W~Ct!5 )
t851

t

m i ,t8 . ~6!

This probability is the probability of the pathCt averaged on
the disorder@20#.

Let us consider what would be the rigorous computat
of this quantity. The extremal rule can be formulated by d
fining a growth probabilityh i($x%) for site i to be selected,
given by

h i~$x%!5)
j

u~xj2xi !5H 1, xi5min$x%

0, xiÞmin$x%.
~7!

Then the probability of a given pathCt is given by

VCt
~$x%!5 )

t851

T

h i t8
~$x%At8

!, ~8!
1-3
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which can assume only the values 1 or 0. The exact com
tation of themeanprobability of the pathCt consists in tak-
ing the average over the realizations of the disorder. T
average cannot be factorized: this means that it is not p
sible to obtain the mean probability of a pathCt by simply
multiplying the mean probability of the pathCt21, corre-
sponding to the firstt21 steps of pathCt , for the mean
probability of the last step. On the contrary, the weig
W(Ct) is factorized as in Eq.~6! because the one-step pro
abilities m i ,t are conditional probabilities. The weights
W(Ct) of the paths of length 6 are plotted in Fig. 2. In Fi
3 are plotted the effective probability densitiesf i ,t(x) of a
site i for different values oft: the site chosen is not update
from time t51 to time t54, the corresponding PDP is the
modified in such a way to approach the histogram shape

FIG. 2. Statistical weightsW(C6) of the pathsC6 of length 6.
Paths are numbered from 1 toN6 following the order in a treelike
diagram like the one shown in Fig. 1.

FIG. 3. Effective probability density of the site 1 at differe
times of the path 1a2a3a4a. The probability densities are lab
with the indexest,t giving the ‘‘age’’ of the quenched number, an
the time step of the path.
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IV. THE HISTOGRAM EQUATION

We now introduce an equation for the histogramF t(x),
that represents the average probability density of
quenched variables at timet. In the limit t→` we obtain an
equation for the stationary histogram. Let us introduce
function ht(x) defined as

ht~x!5LF t~x!, ~9!

whereL is the size of the system. Thenht(x)dx is the aver-
age number of quenched variables in the system in the in
val @x,x1dx# at time t. Since the species updated at ea
time step is the minimal one with the two nearest neighbo
we can write a balance equation

ht11~x!5ht~x!2mt11~x!2@ f 1~x!1 f 2~x!#13 f 0~x!,

~10!

wheremt(x) is the probability density of the minimal vari
able; f 1,2(x) are the probability densities that the two near
neighbors variables would have at timet11 if they were not
updated. The PDF’sf 1,2(x) are given by the first line of Eq
~4! with k5 i 21 andk5 i 11, respectively. Because of th
self-averaging property of this function, the result obtain
by taking the asymptotic limit coincides with the one o
tained by averaging over the possible realizations of the
order:

lim
t→`

ht~x!5LF~x!5L^F~x!&$x% . ~11!

We then obtain

^m~x!&1^ f 1~x!1 f 2~x!&2350, ~12!

where f 0(x)51.
To compute the averagêf 1(x)1 f 2(x)& we use the

weights W(Ct) obtained by applying the RTS algorithm
^ f 1(x)1 f 2(x)& is given by averaging over the pathsCt ,
weighed with theW(Ct)

^ f 1~x!1 f 2~x!&5

(
t51

`

(
Ct

W~Ct!@ f 1
Ct~x!1 f 2

Ct~x!#

(
t51

`

(
Ct

W~Ct!

.

~13!

To compute this quantity to the ordern, we perform an exact
enumeration of the paths of lengtht<n. For each pathCt ,
f 1,2

Ct (x) are computed by iterating the formulas in Eq.~4! to
obtain the effective probability densities at timet11 of the
nearest-neighbor sites of the site selected to grow at timet of
the pathCt . The sum in Eq.~12! contains also terms propor
tional toF(x). This happens when one of the nearest nei
bors of the extremal site does not belong to the set of ac
sites, its probability density isF(x). Moreover,xc appears
explicitly in Eq. ~13! because both the probability densitie

ed
1-4
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f 1,2(x) and the weightsW(Ct) depend on it~since xc has
been introduced as a parameter by imposing that the sy
is under anxc avalanche!.

The minimum probability density is averaged in a diffe
ent way, following a mean field argument. We now consid
the generalized run time statistics@19#, which gives the cor-
rect form for the effective probability densities in the case
a stochastic dynamics. Let us suppose to have a growth p
ability h($x%) depending on the quenched disorder differe
from extremal rule. Also in this case the system stores in
mation during the evolution. The Eq.~4! must now be modi-
fied in order to take into account the probabilityh i($x%). The
one-step probability is obtained in the following way:

m i ,t5E
0

1

f i ,t~xi !dxiE
0

1

•••E
0

1

)
j PAt2$ i %

dxj f j ,t~xj !h i~$x%At
!,

~14!

where nowAt is given by all the sites in the system. Th
probability density of the minimum site is consequen
given by

mi ,t11~x!5
1

m i ,t
E

0

1

dxid~xi2x! f i ,t~xi !

3E
0

1

•••E
0

1

)
k

h i~$x%At
! f k,t~xk!dxk , ~15!
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wherei t is the quenched number of the site selected at t
t.

We now consider the growth probability given by

h i~$x%At
!5

e2xi /T

(
j PAt

e2xj /T

. ~16!

In this way in the limitT→0 we recover the extremal rule

lim
T→0

e2xi /T

(
j 51

L

e2xj /T

5H 1, xi5min$x%

0, xiÞmin$x%.
~17!

We then substitute the expression Eq.~16! in Eq. ~15! to
realize the average over the disorder and then the limiT
→0.

We average on the pathsCt of length t and then consider
the limit t→`. The average on the pathsCt is taken by
averaging first on the last step and then on the pathsCt21,

^mi ,t~x!&Ct
5^^mi ,t~x!& i t

&Ct21
. ~18!

The first average gives
^mi ,t~x!& i t21
5(

i 51

L

m i ,tS 1

m i ,t
f i ,t~x!E

0

1

•••E
0

1

)
j Þ i

dxj f j ,t~x!
e2x/T

e2x/T1(
kÞ i

e2xk /TD .

Then, averaging over the pathsCt21 we obtain

^^mi ,t~x!& i t
&Ct21

5(
i 51

L K f i ,t~x!E
0

1

•••E
0

1

)
j Þ i

dxj f j ,t~x!
e2x/T

e2x/T1(
kÞ i

e2xk /TL
'(

i 51

L

^ f i ,t~x!&E
0

1

•••E
0

1

)
j Þ i

dxj^ f j ,t~x!&
e2x/T

e2x/T1(
kÞ i

e2xk /T

. ~19!
on
Taking the limit t→` we have^ f j ,t(x)&5F(x),

^m~x!&5LF~x!E
0

1

•••E
0

1F)
j Þ i

dxjF~xj !G
3

e2x/T

e2x/T1(
kÞ i

e2xk /T

. ~20!

Let us consider the integral in the right-hand side of Eq.~20!:
it is the average of the function
g~$xk%!5
e2x/T

e2x/T1(
kÞ i

e2xk /T

,

which is a function of the (L21) variables$xk%kÞ i . If we
put zj5e2xj /T and Z5(kzk , according to the central limit
theorem the deviation from the mean value^Z&5(L
21)^z& is negligible. We can then make the approximati
^F(Z)&'F(^Z&),
1-5
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E
0

1

•••E
0

1

)
j Þ i

dxjF~xj !
e2x/T

e2x/T1(
kÞ i

e2xk /T

'
e2x/T

e2x/T1~L21!^e2xk /T&
.

We now introduce the parameterxc by defining ^z&
5^e2x/T&5e2xc /T. We finally obtain

^m~x!&5LF~x!
1

11~L21!e2(xc2x)/T
. ~21!

We can see that if we assume forF(x) the behavior

F~x!5H OS 1

L D , x<xc

O~1!, x.xc ,

~22!

then the average of the minimum density function giv
above has the expected behavior, in the limitT→0,

^m~x!&5H O~1!, x<xc

0, x.xc ,
~23!

Thus the parameterxc introduced above is the critical thresh
old in the histogram function.

We can now turn to Eq.~12!. After use of Eqs.~21! and
~13!, the equation takes the form

FIG. 4. Empty points represent the values ofxc obtained by the
application of the RTS algorithm fromn52 to n57. The continu-
ous line represents the fit curvexc(n)50.662axb with a50.291
60.003 andb50.2060.03. The inset shows the behavior ofV(n)
up ton57. AssumingV(n);n2t11 as a good approximation als
for small n, one findst.1.05.
04610
LF~x!
1

11~L21!e2(xc2x)/T
1

A(n)~xc!F~x!1B(n)~x,xc!

D (n)~xc!

2350, ~24!

where the coefficientsA(n)(xc), B(n)(x,xc), andD (n)(xc) are
given by Eq.~13! with truncation at ordern. There is only
one value ofxc for which F(x) is normalized. This value
gives the value of the BS threshold.

It is easy to verify that the first order of approximatio
n51, corresponds to the mean field approximation. Inde
the first order of Eq.~13! is

^ f 1~x!1 f 2~x!& (1)52F~x!. ~25!

This is essentially the random neighbors assumption sinc
this way all the correlations among the species in the a
lanche are neglected. By substituting Eq.~25! in Eq. ~24! we
obtain

F~x!5
3

21
L

11~L21!e2(xc2x)/T

~26!

that in the limitT→0 becomes

F~x!5H 3

L
, x<xc

3

2
, x.xc .

~27!

Then, imposing the normalization condition

FIG. 5. The continuous line gives the stationary distributi
m(x) of the minimal fitnesses evaluated through the application
the RTS algorithm, considering all the possible avalanche path
to a maximal timen57 after the selection of the initiator, an
assumingxc(n→`)50.66. The points give the numerical behavi
evaluated in extensive simulations.
1-6
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1

F~x!dx51 ~28!

we obtain 3
2 (12xc)51, verified for xc5 1

3 , which is the
value obtained in the mean field case@13#. It is worth notic-
ing that in Eq.~27! we have analytically obtained the beha
ior F(x);1/L underxc .

We solved numerically Eq.~12! from ordern52 to order
n57. The values ofxc obtained for different values ofn are
plotted in Fig. 4. By considering part of the correlatio
among species,xc becomes larger than the one obtained
the mean field approximation (xc51/3). The best evaluation
is xc (n57).0.465, larger than the mean field result but s
quite far from the value obtained from simulations. Nev
theless, it is possible to verify that the behavior ofxc(n) is
compatible with an asymptotic valuexc (n→`).0.66. We
made a fit with the fitting functionxc(n)50.662axb that is
found to be well compatible with the given asymptotic val
~see Fig. 4!. The fit values area50.29160.003 andb
50.2060.03. The small value ofb is due to the fact that the
avalanche duration distributionP(s) is characterized by a
small exponent (t.1.07), henceforth all the sizess are im-
portant for statistics.

One can usexc(n→`) to evaluate both the avalanch
exponentt and the average minimum distributionm(x)
[^mi(x)&. The exponentt can be obtained from the func
tion V(t)5(Ct

W(Ct) for t ranging from 1 to the maxima
,

e,

n-

et

.

04610
l
-

possiblen. This function is proportional to the probabilit
that the avalanche lasts at leastt time steps. Thus, in the
scaling regime,V(t);t2t11. Making this hypothesis, and
substituting the valuexc(n→`) in the expressions giving
the weightsW(Ct), one findst (n57).1.05 ~see Fig. 4!,
which is in agreement with the known numerical value.

Finally, we can obtain an approximation of the probabil
density function of the minimal fitnessm(x) in the stationary
state. Let us consider the Eqs.~21! and ~24!. If we take the
limit T→0 in Eq. ~21! we obtain

^m~x!&5LF~x!u~xc2x!. ~29!

If we now turn to Eq.~24! and we solve it forF(x) using the
value xc(n→`), we obtain the functionm(x) reported in
Fig. 5. In the same figure, this result is compared with
numerical distribution of the minimal fitnesses obtained
the numerical simulations. In spite of the strong approxim
tion ~the paths considered are only those of length<7), the
agreement is quite good.

In conclusion, this paper presents a perturbative appro
to the BS model, based on the probabilistic framework cal
run time statistics. The detailed derivation of the se
organized thresholdxc , the avalanche exponentt, and the
stationary distribution of minimal fitnessesm(x) is presented
here. Through RTS we are able to improve the agreem
between the numerical and the theoretical values found
this model.
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