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Probabilistic approach to the Bak-Sneppen model
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We study here the Bak-Sneppen model, a prototype model for the study of self-organized criticality. In this
model several species interact and undergo extinction with a power-law distribution of activity bursts. Species
are defined through their “fitness” whose distribution in the system is uniform above a certain threshold. Run
time statistics is introduced for the analysis of the dynamics in order to explain the peculiar properties of the
model. This approach based on conditional probability theory, takes into account the correlations due to
memory effects. In this way, we may compute analytically the value of the fitness threshold with the desired
precision. This represents a substantial improvement with respect to the traditional mean field approach.
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[. INTRODUCTION havior of the histogram equation. We apply here RTS to the
BS model in order to find an analytical approach to solve the

In the recent years, many models mimicking the scalemodel.
free behavior exhibited by natural phenomena such as river As regards the analytical results available for the BS, the
basins[1,2], fracture dynamic$3,4], earthquake$5], have  only successful approach has been the mean field approxi-
been extensively studied. The main features of these modefation. Scale relations and an equation describing the hier-
are the lack of spatial and temporal characteristic scales, thfchy of the avalanchd43], allow us to reduce the number
evolution through intermittent bursts of activity and the ab-0f independent exponents to one. A kindeoéxpansion was
sence of the fine tuning of some parameter to reach the critRlso introduced to compute the critical exponents by per-
cal state. To describe all this, the concept of self-organizedorming an expansion around their mean field valad].
criticality (SOQ [6] has been introduced, and many works This alternative approach allows us to compute in a pertur-
have been devoted to clarify its real nat(ivg. bative way the value of the critical threshold linking it to the

We focus here on the evolution model introduced by Bakavalanche exponentiat. In the following sections we are
and SneppefBS) in 1993[8]. This model is the prototype of going to introduce the main features of the model, the basic
a wide class of SOC models, characterized by a deterministigomputation of the run time statistics, and the result of this
dynamics in a medium with quenched disorder. Theapproach with respect to the BS. A preliminary paper with
quenched noise is independent of time and represents ti§®me of the results has already been published in [REf,
disordered environment where the system evolves. BS modékere instead we are going to fully develop the derivation of
is defined by a discrete set bfspecies arranged on an one- such results.
dimensional network. Each specids defined by a “fithess”

X; given by a real number in the interval (0,1). Time evolu-

tion is discretized and at any time step the species with the

lowest fitness is removed from the set/citenote. Also, at the The dynamics of the BS model can be viewed as a
same time the two species neighbors are removed. Thisranching process of branching ratipif L is the number of
should model a food web where extinction of one speciespecies in the system. At every time step, one of lthe
affects also the survival of predation and prey species. Threguenched numbers assigned to the sites is selected to be up-
new species with randomly extracted new fitness then entefated. The same is done for the two nearest neighbors. It is
the system. Hereafter, we shall call this process an “updatthen possible to represent this process as a treelike picture
ing” of the species fithesses. After a transient period, thewhere every node represents a state from which the system
system reaches spontaneously a stationary state characterizeth reachL possible states at the subsequent time step.
by two main featuresti) the fitnesses are uniformly distrib- Therefore, at timet there arelL' possible states that are
uted between a threshold valug and 1;(ii) the dynamics reached through' different paths. Because of the determin-
evolves as a sequenceaftical avalancheswhose duration istic nature of the model, time evolution is determined by the
s is power-law distributed9]: P(s)~s~ 7, where 7=1.07  realization of the disordefx}. This means that if we know
[10]. the initial set of values;, i=1, ... L, and the three num-

To study in an analytical way this kind of processes, abers extracted at each time step then we also kagwiori
method based on conditional probability has been recentlthe evolution of the system. Otherwise, to give a description
introduced. This method, called run time statist{€sTS), of the behavior of the generic system, we should consider a
provides a powerful tool to study how the system stores instatistical average over the possible realizations of the
formation on the disorder during its evolution. This methodquenched disorder. RTS provides an iterative algorithm to
has been also applied to the class of models derived by tha&ssign to each patlsequence of eventts statistical weight
invasion percolatiof11,12 to compute the asymptotic be- according to the laws of conditional probability.

Il. CRITICAL DYNAMICS
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We_c_onsider the system in the critical state. In_this statio_n- -0 2-1012 & Notnitnidie
ary critical state of BS model almost all the fitnesses lie
above a threshola,. The distribution function of the fit- 10 K. evesneobiged
nesses in the critical state, called thistogram ®(x), is 5 1 519 X Active site of age 1
found to be uniform above., and almost zero below, . t=1
The critical state is characterized by a power-law distribution / \
of the durations of critical avalanchesP(s)~s™ ". Critical 0
avalanches are defined as a sequence of evwept{s) 321012 2-1012 -2-10123

<X, Wherex,,in(s) is signal i.e., the value of the minimal t=2 CRXABO 00000 XXX

fitness at times [9]. Then a critical avalanche begins each

time the signal reaches a value larger thanBecause of the  _, 2/-1/ J0 1 -1 0\l -110} \1\

shape of the histogram, that is of ordet Xbr x<x. and

constant forx>x.. In the critical state the signal reaches FIG. 1. Diagrammatic plot of the first three steps in an ava-
most values close t&. and the dynamics is a sequence of lanche tree. The initiatar=0 is selected at=0. At each step one

critical avalancheg9]. Then the site giving rise to a new has to consider all the possible offsprings. Nonactive sites are rep-

avalanche, called thieitiator, has a fitness close tq.. This resented by a filled circle; updated active sites are represented by
means tha,t when the initiaior is selected. all the ;)ther sitewith a simple cross. Crossed empty circles represents instead active

i Sites not updated at the previous time steps.
have fithesses larger thag.

Since the critical avalanches are independent of each

other[9], we can consider the dynamics within one genericrig. 1). In Table | we report the numbet, of possible paths
critical avalanche. This is then a fair description of the dy-whose length ig. It can be shown thall; grows roughly as
namics of the system in the critical state. Let us define the s&t. Given this picture of the stationary state, it is evident that
of active sitesA; as the sites covered by the avalanche, i.e.a description of the model evolution can be achieved through
the sites whose fitness has been updated at least once sing@escription of the growth paths. Run time statistighose
the beginning of the avalanche. If we consider the dynamicgpproach is described in the following sectidwlps in sort-
within an avalanche, the possible events at timegard only  ing out the most probable paths, thereby extracting the avail-
the sites inA; because the selection of any other site wouldable information on the process.
imply the end of the avalanche. Indeed, sites not belonging
to A; have a fitness larger thaq (by definition of A, their lIl. THE RTS APPROACH
fithess remained unchanged since the first step of the ava-
lanche. Therefore, the evolution of the avalanche can be Through the RTS we are able to compute the statistical
seen as a branching process where the branching ratio is neight of all the possible paths corresponding to a critical
fixed. avalanche of a fixed duratiofil6,17. The RTS has been
Without loss of generality, we take the time origin at the developed in order to extract the maximal information avail-
beginning of a critical avalanche, and the origin of the coor-able from the knowledge of the dynamical history followed
dinates in the initiator site. At=0 the initiator is the site by the process. The information is storedeiffectiveprob-
with the smallest fitnes@.e., extremal rulpand its quenched ability density function§PDF’s) for the variablegx}. These
variable (in the stationary stajehas a value close ta. effective density functions at a certain tinieare used to
Since we are assuming that the stationary state in the systep@mpute the conditional probabilities of all the possible
is the critical one, all the quenched numbers in the systergvents at time+ 1 given the state at time The probability
are distributed following the stationary distributish(x),  Of @ sequence of eventthat is a fixed path is then factor-
apart from corrections of order 11/ Updating at timet=0 ized in the product of these one-step probabilities. The time-
affects the initiator and the two nearest neighbdxs.; is  dependent PDF’s are obtained by applying the laws of con-
then composed by the three sites1,0,1}. The three vari- ditional probability. At the beginning the only information
ables corresponding to these sites are distributed followingVvailable on the disorder is the probability densfiy(x)
the uniform probability densityf,(x). If the avalanche pro- from which the quenched variables are extracted. The condi-
ceeds, there are three possible events leading to three diffdfonal probability laws in the following steps modify the
ent configurations for the systefsee Fig. 1 Then a path of shap_e of the probability distribution once the previous his-
length 2 can be realized in the following three way: tory is known. .
growth of the initiator at timé=0 and then growth of its left ~ In the case of BS, at every time step the smallest number
neighbor at timet=1; (ii) growth of the initiator at time IS rgmoved from t'he system. It is then intuitive that if the
=0, and successive growth of the initiator at titze2; (i) lifetime of a species, i.e., the number of tests the species
growth of the initiator at timeé=0 and then growth of the
right neighbor at time= 1. As the lengtht (i.e., the number
of step$ increases, the numbét; of possible paths of that
length increases fast. For example, avalanches lasting twh
time steps can occur in the previous three ways, butthere alg, 1 3 11 47 227 1215 7107 44959 305091
eleven ways to form an avalanche of three time stsge

TABLE |. Number of possible paths as a function of time.

1 2 3 4 5 6 7 8 9
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survived in the search for the minimum, is large, its fithess isk't(x)
(probably also large. Henceforth, the longer the lifetime the
higher the probability to deal with a large value of the fitness
X, and the smaller the probability to be removed. This con-
cept can be easily formalized by using the theory of condi-
tional probability.

Let us introduce the time-dependent PDF'$(x) giving
the probability density of the quenched variable of $itg
time t. If m; ((x) is the probability density function of fitness
at time t (assuming it corresponds to sitg, we have that 1 X 1
m; ((X)dx is the probability that the fitness of sitehas a _fk,t(xc)J fi,t(xi)dxiH f dxf (%) x>Xc,
value betweerx and x+dx (given that at timet of a fixed Kit 0 oo
path,i is the minimum with fithess smaller thag; this last

4

condition ensures that the system is still under the same criti- ) ) . )
cal avalanche Thenm, ,(x) is given by wherg'J eA_1—{i,k}. In th!s way the eﬁectwe .PD'F’s are

’ conditioned to the whole history from time (®eginning of
the avalancheto time t because of the step-by-step algo-
rithm through which they are obtained. We also notice that if
the minimum fitness is less thar, this implies that
fi t(X) =1 1(xc) for x>x.. As it has been pointed out in Ref.
[9], the dynamics involves only the quenched numbers below
Xc, this is the reason why the system does not acquire infor-
mation on the variables in the regioo> X, .

=P(Xx<x<x+dx|xi=min{x}o X <Xc)

P(x<x, <x+dxNx;= min{x}AH,xi <X¢)

P(xi=min{X}a . Xi<Xc)

1 X 1
—F(X) fi,t(Xi)dXiH f dxf; (X)) x=x¢
Mit 0 i Xi

m; ((X) = P(X<x; <X+ dX/x;=min{x}o X <Xc)

P(X<x;<x+dxNx;=min{X}o ,X<Xc)

P(xi=min{X}a_,Xi<Xc)

1 . . .
_ These formulas for the effective probability densities hold
= fi—1(X dx f ¢ 1(X
Mit-1 el )keAtlj[r{i} okt 1% if we assume that the probability density of the whole set of
variablesF,({x}) could be factorized in the product of the
XSXX>Xe (1) one-variable probability densities at any time. Actually this is

true only at timet=0, when the[x} are uncorrelated, while at
later times the extremal dynamics induces correlations

where we have defined the one-step probabjity as among them. Nevertheless, the approximation

ﬁ({x}){[ (%) (5)

wi 1= P(Xi=min{x} o, X <Xc)

I1

jeA i

has proven to lead to results in good agreement with data
from simulations[18], and to give rise to an error that is
negligible for large values of the system siz¢19].

Once the one-step probabilitigs ; have been computed,
the probability of a given patle; (i.e., a fixed sequence of
events from time 0 to timé) is given by

X¢ 1
=f0 dxfi —1(x) } fxdxjfj,t_l(xj). 2)

wit represents the probability that sitehas the minimal
fitness at time (smaller tharx.), given the path followed up
to timet—1 [all the information about the past steps is in-
cluded in the effective PDF'§; ((x)]. In both Egs.(1) and
(2) we consider only the fitnessq{:x;}At of the active sited\,
because the others actually do not participate in the dynamrhjs probability is the probability of the patb, averaged on
ics, being larger tham. . It is important to notice that the disordef20].

Let us consider what would be the rigorous computation
of this quantity. The extremal rule can be formulated by de-
fining a growth probabilityn;({x}) for sitei to be selected,

t

(6)

A, Hirs1. @ given by
1, x;=min{x}
i(Xp) = O(X;—Xj)= . 7

This is because of the condition that the minimum fitness is m(ixh) H (=) 0, X;#min{x}. @
less than x.. The complementary probability (1 N ) o
—Zjcaki) is then the probability that the minimum is Then the probability of a given pat@, is given by
larger thanx., that is, that the avalanche stops at titne T

In a si_milar way we can obtain the probability densities QCI({X}): 11 mt’({x}A[,), (8)
fiet(X), with ke A;_4, t'=1
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0.004 IV. THE HISTOGRAM EQUATION
We now introduce an equation for the histogrdm(x),
- that represents the average probability density of the
0.003 | -- quenched variables at timeln the limitt—o we obtain an
. PR . equation for the stationary histogram. Let us introduce the
WG S L function h,(x) defined as
0.002 3 '- : 2 hy(x) =L (), 9
Lo wherelL is the size of the system. Thén(x)dx is the aver-
0001 L . S5an e . e age number of quenched variables in the system in the inter-
B S P R val [x,x+dx] at timet. Since the species updated at each
R N time step is the minimal one with the two nearest neighbors,
A A AL we can write a balance equation
0.000 R i R P S WAt I L)
0 200 400 600 800 1000 1200
Cq N1 (X) =he(X) =myy 1(X) = [F1(X) + F2(x) ]+ 3 (%),
(10

FIG. 2. Statistical weight®/(Cg) of the pathsCg of length 6.
P_aths are numbered from 1 by fpllowing the order in a treelike  \yherem,(x) is the probability density of the minimal vari-
diagram like the one shown in Fig. 1. able; f, () are the probability densities that the two nearest

which can assume only the values 1 or 0. The exact Compur]eighbors variables would have at time1 if they were not
tation of themeanprobability of the pattC; consists in tak- updated. The PDF$, {x) are given by the first line of Eq.

ing the average over the realizations of the disorder. Thi§4) with k=_|—1 andk=|+1,_respec_t|vely. Because of t_he
T o Self-averaging property of this function, the result obtained
average cannot be factorized: this means that it is not po

sible to obtain the mean probability of a path by simply %Y taking the asymptotic limit comudes \.N'th. the one Ob.'
g . tained by averaging over the possible realizations of the dis-
multiplying the mean probability of the pat@,_,, corre-

sponding to the first—1 steps of pathC,, for the mean order:
probability of the last step. On the contrary, the weight |
W(C,) is factorized as in Eq6) because the one-step prob- ‘
abilities w;, are conditional probabilities. The weights

W(Cy) of the paths of length 6 are plotted in Fig. 2. In Fig. \nee then obtain

3 are plotted the effective probability densitigg(x) of a

sitei for different values ot: the site chosen is not updated (M(x))+(f1(X) + (X)) —3=0, (12)
from timet=1 to timet=4, the corresponding PDP is then

modified in such a way to approach the histogram shape. wherefy(x)=1.

20 To compute the averagéf,(x)+f,(x)) we use the
weights W(C,) obtained by applying the RTS algorithm:

imh () =L®(x)=L(P(x)) gy (11)

— 0

— f la,
_fljlag(()x) (f1(x)+f,(x)) is given by averaging over the pati;,
£y 23(x) weighed with thew(C;)
5 — f4,5162a384a(x)
£ 2, 2 W)L+ 3]
(F100+F2(x)) = ———
1.0 -
> > W(C
i=1 C,
(13
05 - To compute this quantity to the ordeywe perform an exact

enumeration of the paths of lengtksn. For each patiC,,
fffz(x) are computed by iterating the formulas in Eg) to
‘ ‘ ‘ . obtain the effective probability densities at timeé 1 of the
%0 0z 04 06 08 10 nearest-neighbor sites of the site selected to grow atttiofie
x the pathC,. The sum in Eq(12) contains also terms propor-
FIG. 3. Effective probability density of the site 1 at different tional to®(x). This happens when one of the nearest neigh-
times of the path 1a2a3ada. The probability densities are labele@ors of the extremal site does not belong to the set of active
with the indexesr,t giving the “age” of the quenched number, and sites, its probability density i (x). Moreover,x. appears
the time step of the path. explicitly in Eq. (13) because both the probability densities
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f1(x) and the weight3V(C;) depend on it(since x, has

PHYSICAL REVIEW B5 046101

wherei; is the quenched number of the site selected at time

been introduced as a parameter by imposing that the system

is under arx. avalanchg

The minimum probability density is averaged in a differ-
ent way, following a mean field argument. We now consider

the generalized run time statistigs9], which gives the cor-

rect form for the effective probability densities in the case of
a stochastic dynamics. Let us suppose to have a growth prob-

We now consider the growth probability given by

e Xi IT
({xha) = ————.
E e X/T

jehAt

(16)

ability »({x}) depending on the quenched disorder different
from extremal rule. Also in this case the system stores inforin this way in the limitT—0 we recover the extremal rule

mation during the evolution. The E) must now be modi-
fied in order to take into account the probabiligy({x}). The
one-step probability is obtained in the following way:

1 1 1
Hit= fo fi «(x)dx fo e J'Ojel:[{i} dx;f; () mi({X}a,),
(14

where nowA; is given by all the sites in the system. The

e*Xi /T

Xj=min{x}
X;# min{x}.

. 1’
lim  ——— 0,

-0 2 e X IT

j=1

(17

We then substitute the expression Ef6) in Eq. (15) to
realize the average over the disorder and then the limit

probability density of the minimum site is consequentlyﬂo'

given by

1 1
mi,t+1(x):mfodxié(xi_x)fi,t(xi)
1 1
Xf j IT 2({xta) freeOxodx, (19
0 0 k

i

. 1
<mi,t(X)>it,1:2 pit| —Fi (%)
i=1 Mit

Then, averaging over the pats—1 we obtain

- 1 1
((mi,t(x)>it>ct,1=2 fi,t(X)f J [T dx;f; (%)
i=1 0 0

=3, (000 [+ T a0

Taking the limitt—o we have(f; ((x))=®(x),

1 1
(m(X))ILCD(X)fO : H,l;[. dx;®(x;)

efx/T

A 2 e XI/T
k#i

X

(20

Let us consider the integral in the right-hand side of @q):
it is the average of the function

We average on the patl@; of lengtht and then consider
the limit t—o. The average on the patl; is taken by
averaging first on the last step and then on the p&ths,

(M (X )e, =M (X)) )e, ;- (18)
The first average gives
1 e—X/T
f H dx;f; «(x)
0 j#i e—x/T+2 e /T
KZi
e—x/T
J#i efx/T_}_E e X/T
KZi
—xIT
(19

e XTL E e Xk/T
k#i

e—x/T

g({xh) =

e XTy E e /T
k#i

which is a function of the l(— 1) variables{xy}y.;. If we
putzj=e i T andZ=3,z,, according to the central limit
theorem the deviation from the mean valy@)=(L
—1)(z) is negligible. We can then make the approximation

(F(2))=F((2)),
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0.48

o x.(n) from RTS
x(n)=0.66-0.291 n ™%

0.46

0.42

0.40

FIG. 4. Empty points represent the valuesxgfobtained by the
application of the RTS algorithm from=2 ton=7. The continu-
ous line represents the fit curve(n)=0.66—ax" with a=0.291
+0.003 andb=0.20+0.03. The inset shows the behavior®tn)
up ton=7. AssumingQ(n)~n~"** as a good approximation also
for smalln, one findsr=1.05.

fol...joljl;[i dx;d(x;)

—xIT

—xIT

e XTL 2 e X/T
k#i

e

- e*X/T+(L_1)<eka/T> :

We now introduce the parametetr, by defining (z)
=(e ¥Ty=e %/T, We finally obtain

1
m(x))=L®d(x . 21
(MOOY=L@0) = e (21)
We can see that if we assume ®((x) the behavior
o(l) X=<X
d(x)={ L/’ ¢ (22)

O(1), x>X¢,

then the average of the minimum density function given

above has the expected behavior, in the lilmit0,

O(1),
0,

X<X¢

X>Xc, @3

<m(X)>=[

Thus the parametex; introduced above is the critical thresh-

old in the histogram function.
We can now turn to Eq12). After use of Egs(21) and
(13), the equation takes the form

PHYSICAL REVIEW E65 046101

¢ numerical
RTS (n=7)

0 1 1 !
0.0 0.2 04 0.6

0.8 1.0

X

FIG. 5. The continuous line gives the stationary distribution
m(x) of the minimal fithesses evaluated through the application of
the RTS algorithm, considering all the possible avalanche paths up
to a maximal timen=7 after the selection of the initiator, and
assuming.(n—«)=0.66. The points give the numerical behavior
evaluated in extensive simulations.

1 AM(x)D(x)+BM(x,xc)

d(x
( )1+(L—1)e‘(XC‘X)/T DM(x,)

-3=0, (24
where the coefficientd™(x.), B(M(x,x.), andD(M(x) are
given by Eq.(13) with truncation at orden. There is only
one value ofx, for which ®(x) is normalized. This value
gives the value of the BS threshold.

It is easy to verify that the first order of approximation,
n=1, corresponds to the mean field approximation. Indeed,
the first order of Eq(13) is

(F1(x) + () M=2d(x). (25)
This is essentially the random neighbors assumption since in
this way all the correlations among the species in the ava-
lanche are neglected. By substituting E2p) in Eq. (24) we
obtain

3
d(x)= (26)
.\ L
1+(L—1)e /T
that in the limitT—0 becomes
3
E! ngc
d(x)= 3 (27)
> X>Xe .

Then, imposing the normalization condition
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1 possiblen. This function is proportional to the probability
J d(x)dx=1 (28)  that the avalanche lasts at ledstime steps. Thus, in the
0 scaling regimeQ(t)~t~ "1, Making this hypothesis, and
we obtain $(1—x.)=1, verified for x,= 3, which is the substitgting the value<c(n—>w) in the expressions'giving
value obtained in the mean field cd4]. It is worth notic-  the weightsW(C,), one findst (n=7)=1.05 (see Fig. 4,
ing that in Eq.(27) we have analytically obtained the behav- Which is in agreement with the known numerical value.
ior ®(x)~1/L underx,. Fmally, we can obtaln.a_n app.roxmatlon of the pr'obablllty
We solved numerically Eq12) from ordern=2 to order density function of'the minimal fithesa(x) in the stationary
n=7. The values ok, obtained for different values ofare  State. Let us consider the Eq21) and(24). If we take the
plotted in Fig. 4. By considering part of the correlations!imit T—0 in Eq.(21) we obtain
among speciess. becomes larger than the one obtained in _ _
the mean field approximatiorx{=1/3). The best evaluation {M(x))=L® ) (xe=). 29
is X; (n=7)=0.465, larger than the mean field result but still If we now turn to Eq(24) and we solve it foP(x) using the
quite far from the value obtained from simulations. Never-value x.(n—), we obtain the functiorm(x) reported in
theless, it is possible to verify that the behaviorxgfn) is  Fig. 5. In the same figure, this result is compared with the
compatible with an asymptotic valug (n—=)=0.66. We  numerical distribution of the minimal fithesses obtained in
made a fit with the fitting functiox.(n)=0.66—ax® thatis  the numerical simulations. In spite of the strong approxima-
found to be well compatible with the given asymptotic valuetion (the paths considered are only those of length), the
(see Fig. 4 The fit values area=0.291+0.003 andb  agreement is quite good.
=0.20+0.03. The small value df is due to the fact that the In conclusion, this paper presents a perturbative approach
avalanche duration distributioR(s) is characterized by a tothe BS model, based on the probabilistic framework called
small exponent £=1.07), henceforth all the sizessare im-  run time statistics. The detailed derivation of the self-
portant for statistics. organized threshold,., the avalanche exponent and the
One can use& (n—«) to evaluate both the avalanche stationary distribution of minimal fithnesse¥x) is presented
exponentr and the average minimum distributiom(x) here. Through RTS we are able to improve the agreement
=(m;(x)). The exponent can be obtained from the func- between the numerical and the theoretical values found for
tion Q(t) == W(Cy) for t ranging from 1 to the maximal this model.
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